zotyÖÐÅ·ÌåÓý

English zotyÖÐÅ·ÌåÓý¼¯ÍÅÆóÒµÓÊÏä

ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨Áùʮһ£©

2011Äê-10ÔÂ-16ÈÕ ÈªÔ´£ºmebo

£¨10.10-10.16/2011£©
zotyÖÐÅ·ÌåÓý¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР

¡¡¡¡Ö÷ÒªÄÚÈÝ£º¿ìËÙ¸ßЧµÄ½«Ìåϸ°ûÖØ×éΪ¸Éϸ°û£»£»£»£»£»£»£»£»Ï¸Ð¡RNA-101ÊÇÓÐÓõÄϸ°û×ÔÊÉÒÖÖÆ¼Á£»£»£»£»£»£»£»£»Ó÷Ö×Ó¸ÐÊÜÆ÷ԭ붨Á¿ÏÔʾϸ°ûÖ¬ÖÊ£»£»£»£»£»£»£»£»Ô˶¯Äܹ»·ÀÖÎÆ«Í·Í´£»£»£»£»£»£»£»£»ÔÚÉ˺ó·Î²¿ÐÞ¸´Öл·Ö§Æø¹Üƽ»¬¼¡Ï¸°û¹¹½¨Æø¹ÜÉÏÆ¤¸Éϸ°û΢ÇéÐΣ»£»£»£»£»£»£»£»ÔÚÒÈÏÙ¦Âϸ°ûÖÐPDGFÐźſØÖÆÄêËêÒÀÀµÐÔÔöÖ³¡£¡£¡£¡£¡£

¡¡¡¡½¹µã¶¯Ì¬£ºÔÚÉ˺ó·Î²¿ÐÞ¸´Öл·Ö§Æø¹Üƽ»¬¼¡Ï¸°û¹¹½¨Æø¹ÜÉÏÆ¤¸Éϸ°û΢ÇéÐÎ

1.¿ìËÙ¸ßЧµÄ½«Ìåϸ°ûÖØ×éΪ¸Éϸ°û

¡¾¶¯Ì¬¡¿
ͨ¹ý±í´ïËÄÖÖת¼Òò×ÓOct4, Sox2, Klf4, ºÍ c-Myc£¬£¬£¬£¬£¬£¬£¬£¬Ìåϸ°ûÄܹ»ÖØ×é³ÉÓÕµ¼¶àÐÑĿϸ°û£¨iPSCs£©¡£¡£¡£¡£¡£ÖÐÃÀÓ¢Èý¹ú¿ÆÑ§¼ÒµÄÍŽáÑо¿·¢Ã÷ÁË¿ÉÒÔ½«ÖØ×éЧÂÊÌá¸ß100±¶µÄµÄÒªÁì¡£¡£¡£¡£¡£ËûÃÇ·¢Ã÷ͨ¹ý±í´ïά¼×ËáÊÜÌ壨RARs£©»òͨ¹ýά¼×Ëἤ¶¯¼ÁÔöǿά¼×ËáÐźÅÄܹ»¼«´óµÄÔö½øÏ¸°ûÖØ×飬£¬£¬£¬£¬£¬£¬£¬¿ÉÊÇÓÃRAR-¦ÁÒõÐÔÐÎʽÒÖÖÆÎ¬¼×ËáÐźŻáÍêÈ«×è¶Ïϸ°ûÖØ×é¡£¡£¡£¡£¡£ÓëÉÏÊöËÄÖÖת¼Òò×Óͬʱ±í´ïRAR-¦ÃºÍLrh-1(¸ÎÊÜÌåͬԴÎï-1)Äܹ»´ó´ó¼ÓËÙϸ°ûÖØ×飬£¬£¬£¬£¬£¬£¬£¬Í¨¹ýÕâÖÖÒªÁìÀÏÊóÅßÌ¥³ÉÏËάϸ°ûÖØ×é³É»ù̬µÄÓÕµ¼¶àÐÑĿϸ°û½ö½öÐèÒª4Ìì¡£¡£¡£¡£¡£¸Ã·¢Ã÷˵Ã÷RARs½éµ¼µÄÐźÅÔÚÖØ×éÖÐÓÐÒªº¦×÷ÓÃÒÔ¼°RAR-¦ÃºÍLrh-1Ö®¼äµÄЭͬ×÷ÓÃÖ¸µ¼Ï¸°ûÏò»ù̬¶àÄÜÐÔÆ«ÏòÖØ×é¡£¡£¡£¡£¡£

¡¾µãÆÀ¡¿
¸Ã·¢Ã÷´ó´óÌá¸ßÁËÌåϸ°ûÖØ×éΪ¸Éϸ°ûµÄЧÂʺÍËÙÂÊ£¬£¬£¬£¬£¬£¬£¬£¬Ê¹¸Éϸ°ûµÄ»ñµÃ±äµÃÈÝÒ×£¬£¬£¬£¬£¬£¬£¬£¬¹ØÓÚÉîÈëÑо¿¸Éϸ°ûµÄÉúÃü¼ÍÂÉ»áÓкܴó×ÊÖú¡£¡£¡£¡£¡£       

¡¾²Î¿¼ÂÛÎÄ¡¿
Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1100893108
Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog.
Wang et al.
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expressing four transcription factors: Oct4, Sox2, Klf4, and c-Myc. Here we report that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming, but inhibiting it using a RAR-¦Á dominant-negative form completely blocked it. Coexpressing Rarg (RAR-¦Ã) and Lrh-1 (liver receptor homologue 1; Nr5a2) with the four factors greatly accelerated reprogramming so that reprogramming of mouse embryonic fibroblast cells to ground-state iPSCs requires only 4 d induction of these six factors. The six-factor combination readily reprogrammed primary human neonatal and adult fibroblast cells to exogenous factor-independent iPSCs, which resembled ground-state mouse ES cells in growth properties, gene expression, and signaling dependency. Our findings demonstrate that signaling through RARs has critical roles in molecular reprogramming and that the synergistic interaction between Rarg and Lrh1 directs reprogramming toward ground-state pluripotency. The human iPSCs described here should facilitate functional analysis of the human genome.


2. ϸСRNA-101ÊÇÓÐÓõÄϸ°û×ÔÊÉÒÖÖÆ¼Á

¡¾¶¯Ì¬¡¿
×ÔÊÉÊÇÒ»ÖÖ½ø»¯ÉÏÊØ¾ÉµÄϸ°û×ÔÏû»¯»úÖÆ£¬£¬£¬£¬£¬£¬£¬£¬°ÑÂѰ׺Íϸ°ûÆ÷Ë͵½ÈÜøÌåÀ´½µ½â¡£¡£¡£¡£¡£ÔÚ°üÀ¨°©Ö¢ÔÚÄÚµÄÐí¶àÈËÌå¼²²¡ÖÐÇ£Éæµ½ÕâÒ»Àú³Ì±£´æµÄȱÏÝ¡£¡£¡£¡£¡£ÎªÁ˽øÒ»²½ÆÊÎö×ÔÊɵĵ÷Àí»úÖÆ£¬£¬£¬£¬£¬£¬£¬£¬µ¤Âó¿ÆÑ§¼Ò¶ÔÔÚÈéÏÙ°©Ï¸°ûÖе÷Àí×ÔÊÉÁ÷µÄϸСRNA£¨miRNA£©¾ÙÐÐÁ˹¦Ð§É¸Ñ¡£¡£¡£¡£¡£¬£¬£¬£¬£¬£¬£¬£¬ÅжϳöÖ×ÁöÒÖÖÆÐÔmiRNA, miR-101,ÊÇÒÀÍв®ÜÕºÍÀ×ÅÁÃ¹ËØÓÕµ¼µÄ»ù´¡×ÔÊɵÄÓÐÓÃÒÖÖÆ¼Á¡£¡£¡£¡£¡£Í¨¹ýת¼×éÆÊÎö£¬£¬£¬£¬£¬£¬£¬£¬ËûÃÇÈ·¶¨ÁËÈý¸ömiR-101µÄае㣬£¬£¬£¬£¬£¬£¬£¬STMN1, RAB5A ºÍ ATG4D£¬£¬£¬£¬£¬£¬£¬£¬Í¨¹ýsiRNA¾²Ä¬ÕâЩ»ùÒò£¬£¬£¬£¬£¬£¬£¬£¬Äܹ»Ä£Äâ¹ý¶à±í´ïmiR-101±¬·¢µÄ±íÐÍ£¬£¬£¬£¬£¬£¬£¬£¬ÏÔʾÁËÕâЩ»ùÒòÔÚ×ÔÊɵ÷ÀíÖеÄÖ÷ÒªÐÔ¡£¡£¡£¡£¡£ÌØÊâÊÇ£¬£¬£¬£¬£¬£¬£¬£¬¹ý±í´ïSTMN1Äܹ»²¿·ÖÕü¾Èϸ°ûÓÚmiR-101½éµ¼µÄ×ÔÊÉÒÖÖÆ£¬£¬£¬£¬£¬£¬£¬£¬Õ¹ÏÖÁ˸ðеãµÄÖ÷Òª¹¦Ð§¡£¡£¡£¡£¡£×îºó£¬£¬£¬£¬£¬£¬£¬£¬ËûÃǵÄÑо¿»¹ÏÔʾmiR-101½éµ¼µÄ×ÔÊÉÒÖÖÆÄܹ»Ê¹ÈéÏÙ°©Ï¸°û¶Ô4-ôÇ»ùËûĪÎ÷·Ò£¨4-OHT£©ÒýÆðµÄϸ°ûéæÃü¸üÃô¸Ð¡£¡£¡£¡£¡£×ܶøÑÔÖ®£¬£¬£¬£¬£¬£¬£¬£¬ÕâЩÑо¿Ð§¹ûÔÚÁ½¸öºÜÊÇÖ÷ÒªµÄ¿ìËÙÉú³¤µÄÑо¿ÁìÓò¼ä½¨ÉèÁËеÄÁªÏµ£¬£¬£¬£¬£¬£¬£¬£¬Ìá³öÁËmiR-101×÷ΪҪº¦µÄ×ÔÊɵ÷Àí×ÓµÄÐÂ×÷Óᣡ£¡£¡£¡£

¡¾µãÆÀ¡¿
miR-101¶Ôϸ°ûÓÈÆäÊÇÈéÏÙ°©Ï¸°û×ÔÊɵĵ÷ÀíµÄÑо¿£¬£¬£¬£¬£¬£¬£¬£¬¹ØÓÚ½â¾ö°©Ï¸°û¶Ô²¿·Ö¿¹°©Ò©ÎïµÄ¿¹Ò©ÐÔ¿ªÆôÁËÒ»Ìõз¡£¡£¡£¡£¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
The EMBO Journal, 2011; DOI: 10.1038/emboj.2011.331
microRNA-101 is a potent inhibitor of autophagy
Lisa B Frankel, Jiayu Wen, Michael Lees, et al.
Autophagy is an evolutionarily conserved mechanism of cellular self-digestion in which proteins and organelles are degraded through delivery to lysosomes. Defects in this process are implicated in numerous human diseases including cancer. To further elucidate regulatory mechanisms of autophagy, we performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study, we identified the tumour suppressive miRNA, miR-101, as a potent inhibitor of basal, etoposide- and rapamycin-induced autophagy. Through transcriptome profiling, we identified three novel miR-101 targets, STMN1, RAB5A and ATG4D. siRNA-mediated depletion of these genes phenocopied the effect of miR-101 overexpression, demonstrating their importance in autophagy regulation. Importantly, overexpression of STMN1 could partially rescue cells from miR-101-mediated inhibition of autophagy, indicating a functional importance for this target. Finally, we show that miR-101-mediated inhibition of autophagy can sensitize breast cancer cells to 4-hydroxytamoxifen (4-OHT)-mediated cell death. Collectively, these data establish a novel link between two highly important and rapidly growing research fields and present a new role for miR-101 as a key regulator of autophagy.


3.  Ó÷Ö×Ó¸ÐÊÜÆ÷ԭ붨Á¿ÏÔʾϸ°ûÖ¬ÖÊ

¡¾¶¯Ì¬¡¿
Ĥ֬ÊǶ¯Ì¬µÄ·Ö×Ó£¬£¬£¬£¬£¬£¬£¬£¬ÔÚϸ°ûÐźŴ«µ¼ºÍµ÷ÀíÖÐÆðÖ÷Òª×÷Ó㬣¬£¬£¬£¬£¬£¬£¬µ«ÏÖÔÚ»¹È±ÉÙÔÚ»îϸ°ûÖж¨Á¿×·×ÙĤ֬·Ö×ÓµÄԭλÏÔÏñÊÖÒÕ¡£¡£¡£¡£¡£ÃÀ¹ú¿ÆÑ§¼Ò×î½ü±¨µÀÁËÒ»ÖÖÐµĻ¯Ñ§ÒªÁìÓÃÇéÐÎÃô¸ÐÐÔÓ«¹âÍűê¼ÇµÄ¹¤³ÌÂѰ××÷Ϊ¸ÐÊÜÆ÷¶¨Á¿ÏÔÏñĤ֬·Ö×Ó¡£¡£¡£¡£¡£ÕâÖÖ¸ÐÊÜÆ÷Äܹ»ÔÚ²¸È鶯Îïϸ°ûÖоÙÐÐÇ¿Á¦ºÍÃô¸ÐµÄÏÔÓ°¡£¡£¡£¡£¡£ÔÚÃâÒßϸ°ûÖеÄÓ¦ÓÃÕ¹ÏÖÁË´¥·¢ÍÌÊÉ×÷ÓñØÐèµÄPtdIns(4,5)P2£¨Ò»ÖÖÒªº¦µÄÐźÅÖ¬·Ö×Ó£©Å¨¶ÈãÐÖµ¡£¡£¡£¡£¡£ÕâÒ»Õ½ÂÔÆÕ±éÊÊÓÃÓÚϸ°ûÖ¬Àà·Ö×ÓµÄԭ붨Á¿¡£¡£¡£¡£¡£

¡¾µãÆÀ¡¿
ԭ붨Á¿ÏÔÊ¾ÌØ¶¨·Ö×ÓµÄÊÖÒÕʹµÃÎÒÃÇÄܹ»ÉîÈëÏàʶһЩÖ÷ÒªµÄÉúÎï·Ö×ÓµÄÊýÄ¿ºÍŨ¶ÈˮƽÓëÌØ¶¨ÉúÎïÊÂÎñµÄ¹ØÏµ£¬£¬£¬£¬£¬£¬£¬£¬´Ó¶øÄܸü׼ȷµØÕÆÎÕÊÂÎñµÄ±¬·¢Àú³ÌºÍ»úÀí¡£¡£¡£¡£¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Nature Chemistry, 2011; DOI: 10.1038/nchem.1163
In situ quantitative imaging of cellular lipids using molecular sensors
Youngdae Yoon, Park J. Lee, Svetlana Kurilova, Wonhwa Cho.
Membrane lipids are dynamic molecules that play important roles in cell signalling and regulation, but an in situ imaging method for quantitatively tracking lipids in living cells is lacking at present. Here, we report a new chemical method of quantitative lipid imaging using sensors engineered by labelling proteins with an environmentally sensitive fluorophore. A prototype sensor for phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)¡ªa key signalling lipid in diverse cellular processes¡ªwas generated by covalently attaching a single 2-dimethylamino-6-acyl-naphthalene group to the N-terminal ¦Á-helix of the engineered epsin1 ENTH domain, a protein that selectively binds PtdIns(4,5)P2. The sensor allows robust and sensitive in situ quantitative imaging in mammalian cells, providing new insight into the spatiotemporal dynamics and fluctuation of this key signalling lipid. Application of the sensor to immune cells reveals the presence of a local threshold PtdIns(4,5)P2 concentration required for triggering phagocytosis. This sensor strategy is generally applicable to in situ quantification of other cellular lipids.


4.  Ô˶¯Äܹ»·ÀÖÎÆ«Í·Í´

¡¾¶¯Ì¬¡¿
Èðµä¿ÆÑ§¼Ò×î½ü±¨µÀÁËÔ˶¯·ÀÖÎÆ«Í·Í´µÄµÚÒ»¸öÈ·ÔäµÄ¿ÆÑ§Ö¤¾Ý¡£¡£¡£¡£¡£ÔÚÒ»ÏîÉæ¼°91Àý³ÉÄêÆ«Í·Í´»¼ÕßµÄËæ»ú±ÈÕÕÁÙ´²ÊÔÑéÖУ¬£¬£¬£¬£¬£¬£¬£¬1/3ÈËÔÚÀíÁÆÊ¦¼àÊÓÏÂÿÖÜÔ˶¯3´Î£¬£¬£¬£¬£¬£¬£¬£¬Ã¿´Î40·ÖÖÓ£»£»£»£»£»£»£»£»ÁíÍâ1/3×öËÉ¿ªÔ˶¯£»£»£»£»£»£»£»£»×îºó1/3·þÓÃÒ©ÎïTopiramate£¨Í×Ì©£©¡£¡£¡£¡£¡£Ñо¿Ò»Á¬3¸öÔ£¬£¬£¬£¬£¬£¬£¬£¬Æä¼ä¶Ô»¼Õߵį«Í·Í´×´Ì¬¡¢ÉúÑÄÖÊÁ¿¡¢ÉíÌåÔ˶¯Ë®Æ½ºÍÑõÆøÉãÈëÁ¿¶¼¾ÙÐÐÆÀ¹À¡£¡£¡£¡£¡£Ö÷ÒªµÄЧ¹û²ÎÊýÊÇÏà¹ØÓÚ»ùÏßˮƽ£¬£¬£¬£¬£¬£¬£¬£¬ÖÎÁÆ×îºóÒ»¸öÔÂÆ«Í·Í´±¬·¢ÆµÂÊµÄÆ½¾ùïÔÌ­Á¿¡£¡£¡£¡£¡£Ð§¹ûÏÔʾÈý×éÆ«Í·Í´´ÎÊý¶¼ïÔÌ­ÁË£¬£¬£¬£¬£¬£¬£¬£¬ÓÐÒâ˼µÄÊÇ£¬£¬£¬£¬£¬£¬£¬£¬Èý×é¼äÔ¤·ÀºÍïÔ̭ƫͷʹµÄЧ¹ûûÓвî±ð£¬£¬£¬£¬£¬£¬£¬£¬Òâζ×ÅÔ˶¯ºÍËÉ¿ª¡¢·þÒ©¹ØÓÚ·ÀÖÎÆ«Í·Í´ÓÐÏàͬ×÷Ó㬣¬£¬£¬£¬£¬£¬£¬¿ÉÒÔ×÷Ϊ²»¿É»ò²»¿Ï·þҩʱµÄÑ¡Ôñ¡£¡£¡£¡£¡£

¡¾µãÆÀ¡¿
¸ÃÑо¿ÌṩÁ˽ÏÁ¿³ä·ÖµÄ¿ÆÑ§ÒÀ¾Ý֤ʵ¹ØÓÚÆ«Í·Í´£¬£¬£¬£¬£¬£¬£¬£¬Ô˶¯¼òÖ±Äܹ»Æðµ½ºÍÒ©ÎïÒ»ÑùµÄ·ÀÖÎЧ¹û¡£¡£¡£¡£¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Cephalalgia, 2011; DOI: 10.1177/0333102411419681
Exercise as migraine prophylaxis: A randomized study using relaxation and topiramate as controls
E. Varkey, A. Cider, J. Carlsson, M. Linde.

Aim: Scientific evidence regarding exercise in migraine prophylaxis is required. Therefore this study aimed to evaluate the effects of exercise in migraine prevention.
Methods: In a randomized, controlled trial of adults with migraine, exercising for 40 minutes three times a week was compared to relaxation according to a recorded programme or daily topiramate use, which was slowly increased to the individual¡¯s highest tolerable dose (maximum 200 mg/day). The treatment period lasted for 3 months, and migraine status, quality of life, level of physical activity, and oxygen uptake were evaluated. The primary efficacy variable was the mean reduction of the frequency of migraine attacks during the final month of treatment compared with the baseline.
Results: Ninety-one patients were randomized and included in the intention-to-treat analysis. The primary efficacy variable showed a mean reduction of 0.93 (95% confidence interval (CI) 0.31¨C1.54) attacks in the exercise group, 0.83 (95% CI 0.22¨C1.45) attacks in the relaxation group, and 0.97 (95% CI 0.36¨C1.58) attacks in the topiramate group. No significant difference was observed between the groups (p = 0.95).
Conclusion: Exercise may be an option for the prophylactic treatment of migraine in patients who do not benefit from or do not want to take daily medication.


5.  ÔÚÉ˺ó·Î²¿ÐÞ¸´Öл·Ö§Æø¹Üƽ»¬¼¡Ï¸°û¹¹½¨Æø¹ÜÉÏÆ¤¸Éϸ°û΢ÇéÐÎ

¡¾¶¯Ì¬¡¿
ÃÀ¹ú±ÈÀûʱºÍµÂ¹úµÄ¿ÆÑ§¼ÒµÄÒ»ÏîºÏ×÷Ñо¿×î½üÈ·¶¨ÁË´¥·¢·Î²¿ÊÜÉ˺óµÄÐÞ¸´µÄϸ°ûºÍÐźŷÖ×Ó¡£¡£¡£¡£¡£ÀÏÊó·Î²¿×éÖ¯ÊÜÉËÓÕµ¼Æø¹ÜÖÜΧƽ»¬¼¡Ï¸°ûÉøÍ¸ÏËάĸϸ°ûÉú³¤Òò×Ó10£¨FGF10£©£¬£¬£¬£¬£¬£¬£¬£¬ºóÕßÓÕµ¼Æø¹ÜµÄÐÒ´æÉÏÆ¤Ï¸°û»Ø¹é¸Éϸ°û״̬²¢ÔöÖ³¡¢ÐÞ¸´ºÍÖØÕû·Î²¿×éÖ¯£¬£¬£¬£¬£¬£¬£¬£¬¸ÃÐÞ¸´Àú³ÌºÜÏñ·Î²¿ÐγÉʱµÄԭʼ·¢ÓýÀú³Ì¡£¡£¡£¡£¡£

¡¾µãÆÀ¡¿
¸ÃÑо¿Ð§¹û˵Ã÷»úÌå¾ßÓÐÉ˺ó×ÔÎÒÐÞ¸´µÄÄÜÁ¦²¢ÇÒÊÇͨ¹ý½«Ìåϸ°û¼¤»îµ½¸Éϸ°û״̬ÔÙ¾ÙÐÐÀàËÆÆ÷¹Ù·¢ÓýµÄÀú³ÌÐÞ¸´ÊÜËð×éÖ¯¡£¡£¡£¡£¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Journal of Clinical Investigation, 2011; DOI: 10.1172/JCI58097
Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury
Thomas Volckaert, Erik Dill, Alice Campbell, et al.
During lung development, parabronchial SMC (PSMC) progenitors in the distal mesenchyme secrete fibroblast growth factor 10 (Fgf10), which acts on distal epithelial progenitors to promote their proliferation. ¦Â-catenin signaling within PSMC progenitors is essential for their maintenance, proliferation, and expression of Fgf10. Here, we report that this Wnt/Fgf10 embryonic signaling cascade is reactivated in mature PSMCs after naphthalene-induced injury to airway epithelium. Furthermore, we found that this paracrine Fgf10 action was essential for activating surviving variant Clara cells (the cells in the airway epithelium from which replacement epithelial cells originate) located at the bronchoalveolar duct junctions and adjacent to neuroendocrine bodies. After naphthalene injury, PSMCs secreted Fgf10 to activate Notch signaling and induce Snai1 expression in surviving variant Clara cells, which subsequently underwent a transient epithelial to mesenchymal transition to initiate the repair process. Epithelial Snai1 expression was important for regeneration after injury. We have therefore identified PSMCs as a stem cell niche for the variant Clara cells in the lung and established that paracrine Fgf10 signaling from the niche is critical for epithelial repair after naphthalene injury. These findings also have implications for understanding the misregulation of lung repair in asthma and cancer.


6.  ÔÚÒÈÏÙ¦Âϸ°ûÖÐPDGFÐźſØÖÆÄêËêÒÀÀµÐÔÔöÖ³

¡¾¶¯Ì¬¡¿
ÃÀ¹ú¿ÆÑ§¼Ò×î½üÈ·¶¨ÁËÒ»¸öµ¼ÖÂÈËËæÄêËêÔöÓÀÉú²úÒȵºËصÄϸ°ûµÄÔöÖ³×ÔÈ»ïÔÌ­µÄÒªº¦ÐźÅ;¾¶¡£¡£¡£¡£¡£ÔÚÀÏÊóºÍÈËÌåÄÚÒÈÏÙ¦Âϸ°ûµÄÐËÍúÔöÖ³ËæÄêËêÔöÌí¶øÏ÷Èõ£¬£¬£¬£¬£¬£¬£¬£¬ÑªÐ¡°åÔ´Éú³¤Òò×ÓÊÜÌ壨Pdgfr£©ÐźſØÖÆÒȵºµÄÄêËêÒÀÀµÐÔ¦Âϸ°ûÔöÖ³¡£¡£¡£¡£¡£Ëæ×űäÀÏ£¬£¬£¬£¬£¬£¬£¬£¬¦Âϸ°ûPdgfrˮƽºÍ¦Âϸ°ûÔöÇ¿×ÓEzh2ÒÔ¼°¦Âϸ°ûÔöֳͬʱïÔÌ­¡£¡£¡£¡£¡£

¡¾µãÆÀ¡¿
¸ÃÑо¿·¢Ã÷ΪÔöÇ¿Òȵº¦Âϸ°ûÔöÖ³ÌṩÁËеÄÑо¿Æ«Ïò¡£¡£¡£¡£¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Nature, 2011; DOI: 10.1038/nature10502
PDGF signalling controls age-dependent proliferation in pancreatic ¦Â-cells
Hainan Chen, Xueying Gu, Yinghua Liu, et al.  
Determining the signalling pathways that direct tissue expansion is a principal goal of regenerative biology. Vigorous pancreatic ¦Â-cell replication in juvenile mice and humans declines with age, and elucidating the basis for this decay may reveal strategies for inducing ¦Â-cell expansion, a long-sought goal for diabetes therapy. Here we show that platelet-derived growth factor receptor (Pdgfr) signalling controls age-dependent ¦Â-cell proliferation in mouse and human pancreatic islets. With age, declining ¦Â-cell Pdgfr levels were accompanied by reductions in ¦Â-cell enhancer of zeste homologue 2 (Ezh2) levels and ¦Â-cell replication. Conditional inactivation of the Pdgfra gene in ¦Â-cells accelerated these changes, preventing mouse neonatal ¦Â-cell expansion and adult ¦Â-cell regeneration. Targeted human PDGFR-¦Á activation in mouse ¦Â-cells stimulated Erk1/2 phosphorylation, leading to Ezh2-dependent expansion of adult ¦Â-cells. Adult human islets lack PDGF signalling competence, but exposure of juvenile human islets to PDGF-AA stimulated ¦Â-cell proliferation. The discovery of a conserved pathway controlling age-dependent ¦Â-cell proliferation indicates new strategies for ¦Â-cell expansion
 

¡¾ÍøÕ¾µØÍ¼¡¿¡¾sitemap¡¿